Search results for "molecular dynamics simulations"

showing 10 items of 27 documents

Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors

2018

Summary Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lowe…

0301 basic medicineModels MolecularGlycosylationglycosylationProtein ConformationPhenylalanineGlycineSequence (biology)Intrinsically disordered proteinsnuclear transport receptorssingle-molecule FRETGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEscherichia coliFluorescence Resonance Energy TransferHumansNuclear poreReceptorlcsh:QH301-705.5Single-molecule FRETmolecular dynamics simulationsbinding mechanismintrinsically disordered proteinFG-Nup3. Good healthNuclear Pore Complex Proteins030104 developmental biologychemistrylcsh:Biology (General)BiophysicsNuclear PoreNucleoporinNuclear transport030217 neurology & neurosurgeryProtein BindingCell Reports
researchProduct

Searching for Chymase Inhibitors among Chamomile Compounds Using a Computational-Based Approach

2018

Inhibitors of chymase have good potential to provide a novel therapeutic approach for the treatment of cardiovascular diseases. We used a computational approach based on pharmacophore modeling, docking, and molecular dynamics simulations to evaluate the potential ability of 13 natural compounds from chamomile extracts to bind chymase enzyme. The results indicated that some chamomile compounds can bind to the active site of human chymase. In particular, chlorogenic acid had a predicted binding energy comparable or even better than that of some known chymase inhibitors, interacted stably with key amino acids in the chymase active site, and appeared to be more selective for chymase than other …

0301 basic medicineProteaseschlorogenic acidlcsh:QR1-502030204 cardiovascular system & hematologyMolecular Dynamics SimulationCrystallography X-RayLigandsBiochemistrylcsh:MicrobiologyArticleSerine03 medical and health sciences0302 clinical medicineChymasesCatalytic DomainHumanschamomilecardiovascular diseases; chamomile; chlorogenic acid; chymase; docking; matricin; molecular dynamics simulations; pharmacophore; Biochemistry; Molecular BiologyEnzyme InhibitorsMolecular Biologychymasechemistry.chemical_classificationBinding SitesbiologypharmacophoreChymaseActive sitemolecular dynamics simulationsmatricinAmino acidcardiovascular diseasesMolecular Docking Simulation030104 developmental biologyEnzymechemistryBiochemistryDocking (molecular)dockingbiology.proteinPharmacophoreBiomolecules
researchProduct

Controlling Exciton Propagation in Organic Crystals through Strong Coupling to Plasmonic Nanoparticle Arrays.

2022

Exciton transport in most organic materials is based on an incoherent hopping process between neighboring molecules. This process is very slow, setting a limit to the performance of organic optoelectronic devices. In this Article, we overcome the incoherent exciton transport by strongly coupling localized singlet excitations in a tetracene crystal to confined light modes in an array of plasmonic nanoparticles. We image the transport of the resulting exciton–polaritons in Fourier space at various distances from the excitation to directly probe their propagation length as a function of the exciton to photon fraction. Exciton–polaritons with an exciton fraction of 50% show a propagation length…

Condensed Matter::Quantum GasesCondensed Matter::OtherPhysics::Opticsmolecular dynamics simulationspolariton transportfysikaalinen kemiaCondensed Matter::Mesoscopic Systems and Quantum Hall EffectelektronitkvasihiukkasetplasmonicsAtomic and Molecular Physics and Opticsnanoparticle arraytetraceneElectronic Optical and Magnetic MaterialsCondensed Matter::Materials Sciencemolekyylifysiikkaplasmoniikkastrong light-matter couplingeksitonitnanohiukkasetmolekyylidynamiikkaElectrical and Electronic EngineeringBiotechnologyACS photonics
researchProduct

Novel σ1 antagonists designed for tumor therapy: Structure – activity relationships of aminoethyl substituted cyclohexanes

2021

Abstract Depending on the substitution pattern and stereochemistry, 1,3-dioxanes 1 with an aminoethyl moiety in 4-position represent potent σ1 receptor antagonists. In order to increase the stability, a cyclohexane ring first replaced the acetalic 1, 3-dioxane ring of 1. A large set of aminoethyl substituted cyclohexane derivatives was prepared in a six-step synthesis. All enantiomers and diastereomers were separated by chiral HPLC at the stage of the primary alcohol 7, and their absolute configuration was determined by CD spectroscopy. Neither the relative nor the absolute configuration had a large impact on the σ1 affinity. The highest σ1 affinity was found for cis-configured benzylamines…

DU145 tumor cellsCachannelPrimary alcohol01 natural sciencesAminoethylcyclohexanes; Antagonistic activity; Biotransformation; Ca; 2+; influx assay; Calculated free energy of binding; CD spectroscopy; Chiral HPLC; DU145 tumor cells; Inhibition of human prostate tumor cell growth; Lipophilicity; Molecular dynamics simulations; Molecular interactions; per-residue binding free energy; Selectivity; Stereochemistry; Structure affinity relationships; Voltage gated Ca; 2+; channel; σ receptors; σ; 1; receptor affinityInhibition of human prostate tumor cell growthStereochemistryDrug DiscoveryMoietySelectivityBiotransformationσ receptor0303 health sciencesChemistryAminoethylcyclohexanesCD spectroscopyAbsolute configurationAminoethylcyclohexaneMolecular interactionGeneral MedicineAntagonistic activityper-residue binding free energyreceptor affinityLipophilicityVoltage gated CaStereochemistry12+Calculated free energy of bindingRetinal ganglion03 medical and health sciencesσMolecular dynamics simulationChiral HPLCLipophilicityMolecular interactionsStructure affinity relationship030304 developmental biologyPharmacologyDU145 tumor cellinflux assayMolecular dynamics simulations010405 organic chemistryOrganic ChemistryDiastereomer0104 chemical sciencesChiral column chromatographyσ receptorsStructure affinity relationshipsEnantiomerEuropean Journal of Medicinal Chemistry
researchProduct

Sodium bis(2-ethylhexyl)sulfosuccinate self-aggregation in vacuo: molecular dynamics simulation.

2010

Molecular dynamics (MD) simulations were conducted for systems in vacuo consisting of n AOT(-) anions (bis(2-ethylhexyl)sulfosuccinate ions) and n+/- 1 or n Na(+) ions up to n = 20. For n = 15, positively charged systems with Li(+), K(+), and Cs(+) cations were also considered. All systems were observed to form reverse micelle-like aggregates whose centre is occupied by cations and polar heads in a very compact solid-like way, while globally the aggregate has the form of an elongated and rather flat ellipsoid. Various types of statistical analyses were carried out on the systems to enlighten structural and dynamical properties including gyration radius, atomic pair correlation functions, at…

Dioctyl Sulfosuccinic AcidChemistrySodiumMolecular ConformationGeneral Physics and Astronomychemistry.chemical_elementRadiusMoment of inertiaMolecular Dynamics SimulationGyrationMicelleIonCrystallographyMolecular dynamicsSurface-Active AgentsSolventsPolarPhysical and Theoretical ChemistryAOT Molecular Dynamics simulations reverse micelles self-assemblingSettore CHIM/02 - Chimica FisicaPhysical chemistry chemical physics : PCCP
researchProduct

Free Energy, Enthalpy and Entropy from Implicit Solvent End-Point Simulations

2018

Free energy is the key quantity to describe the thermodynamics of biological systems. In this perspective we consider the calculation of free energy, enthalpy and entropy from end-point molecular dynamics simulations. Since the enthalpy may be calculated as the ensemble average over equilibrated simulation snapshots the difficulties related to free energy calculation are ultimately related to the calculation of the entropy of the system and in particular of the solvent entropy. In the last two decades implicit solvent models have been used to circumvent the problem and to take into account solvent entropy implicitly in the solvation terms. More recently outstanding advancement in both impli…

Energy estimationEnthalpyContinuum solvent Enthalpy Entropy Free energy Implicit solvent MM/GBSA Molecular dynamics simulationscontinuum solvent010402 general chemistry01 natural sciencesBiochemistry Genetics and Molecular Biology (miscellaneous)BiochemistryMolecular dynamicsenthalpy0103 physical sciencesMolecular BiosciencesStatistical physicsPhysics::Chemical PhysicsMolecular Biologylcsh:QH301-705.5PhysicsMM/GBSAQuantitative Biology::BiomoleculesEnd point010304 chemical physicsEnsemble averageSolvationimplicit solventmolecular dynamics simulationsfree energy0104 chemical sciencesSolventlcsh:Biology (General)Solvent modelsPerspectiveentropyFrontiers in Molecular Biosciences
researchProduct

Characterization of Locally Excited and Charge-Transfer States of the Anticancer Drug Lapatinib by Ultrafast Spectroscopy and Computational Studies

2020

[EN] Lapatinib (LAP) is an anticancer drug, which is metabolized to theN- and O-dealkylated products (N-LAP andO-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP,N-LAP andO-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (lambda(max)=550 nm) to ICT states (…

Femtosecond transient absorptionAntineoplastic AgentsSerum Albumin HumanMolecular Dynamics Simulation010402 general chemistryLapatinib01 natural sciencesAnticancer drugsCatalysisFluorescenceQUIMICA ORGANICAComputational chemistrymedicineHumansSpectroscopy010405 organic chemistryChemistryMolecular dynamics simulationsSpectrum AnalysisOrganic Chemistrydigestive oral and skin physiologyCharge (physics)LapatinibGeneral Chemistryequipment and suppliesAnticancer drug0104 chemical sciencesCharacterization (materials science)Excited stateUltrashort pulsehuman activitiesmedicine.drug
researchProduct

Non-syndromic Mitral Valve Dysplasia Mutation Changes the Force Resilience and Interaction of Human Filamin A

2018

International audience; Filamin A (FLNa), expressed in endocardial endothelia during fetal valve morphogenesis, is key in cardiac development. Missense mutations in FLNa cause non-syndromic mitral valve dysplasia (FLNA-MVD). Here, we aimed to reveal the currently unknown underlying molecular mechanism behind FLNA-MVD caused by the FLNa P637Q mutation. The solved crystal structure of the FLNa3-5 P637Q revealed that this mutation causes only minor structural changes close to mutation site. These changes were observed to significantly affect FLNa's ability to transmit cellular force and to interact with its binding partner. The performed steered molecular dynamics simulations showed that signi…

Filamins[SDV]Life Sciences [q-bio]Protein Tyrosine Phosphatase Non-Receptor Type 12Heart Valve DiseasesMutation MissenseMorphogenesisProtein tyrosine phosphataseMolecular Dynamics SimulationBiologyFilaminta3111ArticleFLNA-MVD03 medical and health sciencessteered molecular dynamics simulationsStructural Biologymechanical forcesmedicineHumansMitral valve prolapseMissense mutationFLNAmolekyylidynamiikkasydäntauditCell adhesionMolecular Biology030304 developmental biologyX-ray crystallography0303 health sciencesBinding Sites030302 biochemistry & molecular biologyta1182filamiinitprotein tyrosine phosphatase 12medicine.disease3. Good healthCell biologyFilamin AMutation (genetic algorithm)cardiovascular systemMitral Valveproteiinitmitral valve prolapseröntgenkristallografiaProtein Binding
researchProduct

Histopathology of Skeletal Muscle in a Distal Motor Neuropathy Associated with a Mutant CCT5 Subunit: Clues for Future Developments to Improve Differ…

2023

Genetic chaperonopathies are rare but, because of misdiagnosis, there are probably more cases than those that are recorded in the literature and databases. This occurs because practitioners are generally unaware of the existence and/or the symptoms and signs of chaperonopathies. It is necessary to educate the medical community about these diseases and, with research, to unveil their mechanisms. The structure and functions of various chaperones in vitro have been studied, but information on the impact of mutant chaperones in humans, in vivo, is scarce. Here, we present a succinct review of the most salient abnormalities of skeletal muscle, based on our earlier report of a patient who carried…

General Immunology and Microbiologymuscle pathologydesminmolecular dynamics simulationsmolecular chaperonehuman CCTGeneral Biochemistry Genetics and Molecular BiologyCCT5 mutationdistal neuropathieprotein aggregatechaperone systemimmunohistochemistrychaperonopathieskeletal muscleimmunofluorescenceGeneral Agricultural and Biological Sciencesapical domainBiology
researchProduct

Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid–Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulat…

2013

International audience; The vibrational sum frequency generation (VSFG) spectrum of the water liquid-vapor (LV) interface is calculated using density functional theory-based molecular dynamics simulations. The real and imaginary parts of the spectrum are in good agreement with the experimental data, and we provide an assignment of the SFG bands according to the dipole orientation of the interfacial water molecules. We use an instantaneous definition of the surface, which is more adapted to the study of interfacial phenomena than the Gibbs dividing surface. By calculating the vibrational (infrared, Raman) properties for interfaces of varying thickness, we show that the bulk spectra signature…

InfraredBulk spectra02 engineering and technologyMolecular dynamicsVibrational sum-frequency generations010402 general chemistry01 natural sciencesMolecular physicsSpectral lineInterfacial phenomenaLiquid-vapor interfaceMolecular dynamicssymbols.namesakeDipole orientationComputational chemistryGeneral Materials SciencePhysical and Theoretical ChemistryDividing surfacesDensity functionalsSum-frequency generationMolecular dynamics simulationsChemistryInterfacial water moleculesThin layers021001 nanoscience & nanotechnologyLiquid-vapor0104 chemical sciencesDipoleImaginary partsDensity functional theoryVaporssymbolsDensity functional theory[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]0210 nano-technologyRaman spectroscopyVarying thicknessSum frequency generation spectroscopyThe Journal of Physical Chemistry Letters
researchProduct